5 LESSON PLAN

DEPARTMENT OF MATH AND SCIENCE, ITT, CHOUDWAR

SUBJECT: ENGG. PHYSICS PRACTICAL Periods: 4 per week SEMESTER: 1st & 2nd

NAME OF FACULTY: C.R SAHOO ACADEMIC YEAR.2022-2023

Semester From date: 25/10/2022 To Date:31/01/2023 No. of weeks: 15

Week	Class Day	Practical Topics
1st	1 st	To find the cross sectional area of a wire using a screw gauge.
	2 nd	
	1 st	To find volume of a solid cylinder using a Vernier Calipers(2) To find the thickness and volume of a glass piece using a screw gauge.
2 nd	2 nd	4. To find the thickness and volume of a glass piece using a screw gauge(2)
3 rd	1 st	5. To find volume of a solid cylinder using a Vernier Calipers.
3.4	2 nd	6. To find volume of a solid cylinder using a Vernier Calipers.
4 th	1 st	7. To find volume of a solid cylinder using a Vernier Calipers.
4***	2 nd	8. To find volume of a solid cylinder using a Vernier Calipers.
5 th	1 st	9. To determine the radius of curvature of convex surface using a Spherometer(1).
5	2 nd	10. To determine the radius of curvature of convex surface using a Spherometer(2).
6 th	1 st	11. To determine the radius of curvature of convex surface using a Spherometer(3).
0	2 nd	12. To determine the radius of curvature of concave surface using a Spherometer(1).
7 th	1 st	13. To determine the radius of curvature of concave surface using a Spherometer(2).
,	2 nd	14. To determine the radius of curvature of concave surface using a Spherometer(3).
8 th	1 st	15. To find the time period of a simple pendulum and determine acceleration due to gravity(1).

	2 nd	16. To find the time period of a simple pendulum and determine
		acceleration due to gravity(2). 17. To determine the angle of Prism(1).
_	1 st	17. To determine the angle of Frish(1).
9 th	2 nd	18. To determine the angle of Prism(2).
	1 st	19. To determine the angle of Minimum Deviation by I ~ D curve method(1).
10 th	2 nd	20. To determine the angle of Minimum Deviation by I ~ D curve method(2).
	1 st	21. To determine the angle of Minimum Deviation by I ~ D curve method(3).
11 th	2 nd	22. To trace lines of force due to a bar magnet with North pole pointing North and locate the neutral points(1)
d-	1 st	23. To trace lines of force due to a bar magnet with North pole pointing North and locate the neutral points(2)
12 th	2 nd	24. To trace lines of force due to a bar magnet with North pole pointing North and locate the neutral points(3)
	1 st	25. To trace lines of force due to a bar magnet with North pole pointing South and locate the neutral points(1).
13 th	2 nd	26. To trace lines of force due to a bar magnet with North pole pointing South and locate the neutral points(2).
	1 st	27. To trace lines of force due to a bar magnet with North pole pointing South and locate the neutral points(3).
14 th	2 nd	28. To verify Ohm's Law by Ammeter – Voltmeter method(1).
15 th	1 st	29. To verify Ohm's Law by Ammeter – Voltmeter method(2).
	2 nd	30. To verify Ohm's Law by Ammeter – Voltmeter method(3).